Issue #1 2014 – Digital edition
In Issue #1 2014: Raman Spectroscopy in-depth focus, Ingredients, LIMS, Kinase, Near Infrared in-depth focus, RNA, Microbiology...
List view / Grid view
In Issue #1 2014: Raman Spectroscopy in-depth focus, Ingredients, LIMS, Kinase, Near Infrared in-depth focus, RNA, Microbiology...
19 February 2014 | By Juha K. Rantala, Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University
The last 10 years in biomedical research marks the period of deepening our understanding of the human genome. In the context of cancer research, The Cancer Genome Atlas (TCGA) and related international genomics efforts have now revealed the full complexity of genomic aberrations in human cancers that are postulated to…
18 April 2013 | By Michela A. Denti and Margherita Grasso, Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento, Mattia Barbareschi and Chiara Cantaloni, Unit of Surgical Pathology, Santa Chiara Hospital
In 1993, the laboratories of Victor Ambros and Gary Ruvkun, studying the larval development of the nematode Caenorhabditis elegans, found a small RNA molecule (22 nucleotides) which regulated the translation of the lin-14 gene in an unusual way1,2. They observed that the sequence of the tiny lin-4 RNA was complementary…
13 December 2011 | By Nalini A.L. Mehta & David J. Dow, Molecular and Cellular Technologies, Platform Technology and Science, GlaxoSmithKline and Anthony M. Battram, Molecular and Cellular Technologies, Platform Technology and Science, GlaxoSmithKline & Department of Life Sciences, Imperial College London
In recent years, the development of Next Generation DNA Sequencing (NGS) technology has significantly impacted molecular biology research, resulting in many new insights and discoveries. NGS technology goes beyond traditional DNA sequencing with applications that reach across the central dogma of molecular biology from DNA to RNA and protein science.…
19 October 2011 | By Marie Lundbæk, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology and Pål Sætrom, Department of Cancer Research and Molecular Medicine & Department of Computer and Information Science, Norwegian University of Science and Technology
RNA interference (RNAi) is now a standard tool in molecular biology. Short interfering RNAs (siRNAs) for knocking down your favourite human gene are only a couple of mouse-clicks away at your favourite reagent supplier’s website. Moreover, in contrast to initial attempts at siRNA design, these siRNAs usually give potent target…
RNA-Seq is a powerful sequencing-based method that enables researchers to discover, profile, and quantify RNA transcripts across the entire transcriptome.
20 March 2009 | By
For years biologists have worked to develop alternatives to traditional therapeutics. These efforts, in areas such as stem cell based and gene therapies, have received much fanfare in popular media outlets, raising expectations among the general public. This excitement may have contributed to the hasty progression of early gene therapy…
7 February 2009 | By
For plants and invertebrates, RNA interference is firmly established as an important antiviral mechanism. Even before Fire, Mello, and co-workers described RNA interference (RNAi) in worms in 19981 it was becoming clear that plants have an RNA-dependent pathway that protects against viral infections2. The pathway, then termed post-transcriptional gene silencing…
2 August 2008 | By
Gene silencing by RNA interference (RNAi) uses double-stranded RNA to shut down gene expression in cells. This provides the possibility that this new methodology could be used in the treatment of disease symptoms and disease processes. A particular attraction of RNAi (as well as other gene knockdown methods of treatment,…