Drug repurposing
Posted: 25 June 2020 | Dave Elder (David P Elder Consultancy) | No comments yet
References for ‘Drug repurposing’, from European Pharmaceutical Review Issue 3 2020.
References
- Oprea TI, Bauman JE, Bologa CG, Burunda T, et al. 2011. Drug Repurposing from an Academic Perspective. Drug Discov Today Ther. Strateg. 8(3-4), 2011, 61–69.
- Unlicensed and “off-label” medicines. Information for patients, parent and carers. Oxford university hospitals, NHS Foundation Trust. https://www.ouh.nhs.uk/patient-guide/leaflets/files/12048Punlicensed.pdf. Accessed on 12 June 2020.
- Radley DC, et al. Off-label prescribing among office-based physicians. Arch. Intern. Med., 166, 2006, 1021-1026.
- van Riet-Nales DA, de Jager KE, Schobben AFAM, Egberts TCG. The availability and age-appropriateness of medicines authorized for children in the Netherlands. Br. J. Clin. Pharmacol., 72(3), 2011,465–473.
- Fetro C, Scherman D. Drug repurposing in rare diseases: Myths and reality. Therapies, 75(2), 2020, 157-160.
- Ashburn TT, Thor KB. Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nat. Rev. Drug Discov., 8, 2004, 673-83.
- Deotarse P, Jain A, Baile MB, et al. Drug Repositioning: A review. Int. J. Pharma. Res. Rev., 4, 2015, 51-58.
- Ismail HM, Dorchies OM, Scapozza, L. The potential and benefits of repurposing existing drugs to treat rare muscular dystrophies. Expert Opin. Orphan Drugs, 6(4), 2018, 259-271.
- Baker NC, Ekins S, Williams AJ, Tropsha A. A bibliometric review of drug repurposing Drug Disc.Today. 23(3), 2018, 661-672.
- Liu C, Zhou Q, Li Y, Garner LV, et al. 2020. Research and development on therapeutic agents and vaccines for covid-19 and related human corona virus diseases. ACS Cent. Sci. 2020, 6, 3, 315–331, https://doi.org/10.1021/acscentsci.0c00272
- Rao, MS, Gupta, R, Liguori, MJ, Hu, M, et al. Novel Computational Approach to Predict Off-Target Interactions for Small Molecules. Front. Big Data, 17 July 2019, https://doi.org/10.3389/fdata.2019.00025. https://www.frontiersin.org/articles/10.3389/fdata.2019.00025/full. Accessed on 12 June 2020.
- Car BD. The relevance of off-target polypharmacology. In. Polypharmacology in Drug Discovery. Ed: Peters, JU. Wiley, 2012. https://doi.org/10.1002/9781118098141.ch1
- Dar AC, Das TK, Shokat KM, Cagan RL. Chemical genetic discovery of targets and anti-targets in cancer polypharmacology. Nature, 486(7401), 2012, 80-84.
- DeBusk RF, Peppine CJ, Glasser DB, Shpilksy A et al. Efficacy and safety of sildenafil citrate in men with erectile dysfunction and stable coronary artery disease. Am. J. Cardiol., 93(2), 2004, 147-153.
- Bradley DP, Kulstad R, Racine N, Shenker Y, et al. Alterations in energy balance following exenatide administration. Appl. Physiol. Nutr. Metab., 37(5), 201, 893-899.
- Palumbo A, Facon T, Sonneveld P, Blade J, et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood, 111(8), 2008, 3968-3977.
- MRC, 2014. World’s largest collection of deprioritised pharma compounds opens to researchers. 08 December 2014. https://mrc.ukri.org/news/browse/world-s-largest-collection-of-deprioritised-pharma-compounds-opens-to-researchers/. Accessed on 12 June 2020.
- Pantziarka P, BoucheG, Meheus L, Sukhatme V, et al. The repurposing drugs in oncology project (ReDo). Ecancermedicalscience, 8, 2014, 442. https://pubmed.ncbi.nlm.nih.gov/25075216/. Accessed on 12 June 2020.
- Pantziarka P, Sukhatme V, Bouche G, Meheus L, et al. Repurposing Drugs in Oncology (ReDO)—diclofenac as an anti-cancer agent. Ecancermedicalscience. 10, 2016, 610.
- DRP, 2020. http://www.drugrepurposingportal.com/. Accessed on 12 June 2020.
- EC, 2018. https://ec.europa.eu/health/sites/health/files/files/committee/stamp/stamp_10_44_annex_en.pdf. Accessed on 16 June 2020.
- Allinson M, 2012. NCATS Launches Drug Repurposing Program. Nat. Biotechnol., 30(7), 2012, 571-572.
- FDA, 2019. Repurposing Off-Patent Drugs: Research & Regulatory Challenges. December 5 – 6, 2019. https://www.fda.gov/drugs/news-events-human-drugs/repurposing-patent-drugs-research-regulatory-challenges-12052019-12062019. Accessed on 16 June 2020.
- Papanikolaou N, Pavlopoulos GA, Theodosiou T, Vizirianakis IS, et al. DrugQuest – A text mining workflow for drug association discovery. BMC Bioinformatics, 17(S.5), 2016, 182.
- Su EW, Sanger TM. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov. PeerJ., 5,2017. https://peerj.com/articles/3154/. Accessed on 12 June 2020.
- Lamb J, Crawford ED, Peck D, Modell JW, et al. The Connectivity Map: Using the gene-expression signatures to connect small molecules, genes and disease. Science, 313(5795), 2004, 1929-1935.
- Iorio E, Bosotti R, Scacheri E, Belcastro V, et al. Discovery of drug mode of action and drug repositioning from transcripitional responses. Proc. Natl. Acad. Sci. USA, 107(33), 2010, 14621-14626.
- Chung FH, Chiang YR, Tseng AL, Sung YC, et al. Functional Module Connectivity Map (FMCM): A framework for searching repurposed drug compounds for system treatment of cancer and colorectal adenocarcinoma. PLoS One, 9(1), 2014. https://doi.org/10.1371/journal.pone.0086299. Accessed on 12 June 2020.
- Narod SA, Salmena L. BRCA1 and BRCA2 Mutations and Breast Cancer. Discov. Med. 12(66), 2012, 445-53.
- Vazquez-Ortiz G, Chisholm C, Xu X, Lahusen TJ, et al. Drug repurposing screen identifies lestaurtinib amplifies the ability of the poly (ADP-ribose) polymerase 1 inhibitor AG14361 to kill breast cancer associated gene-1 mutant and wild type breast cancer cells. Breast Can. Res., 16, 2014, . R67. https://doi.org/10.1186/bcr3682. Accessed on 12 June 2020.
- Van Noort V, Scolch S, Zeller IM, Ostertag K, et al. Novel drug candidates for the treatment of metastatic colorectal cancer through global inverse gene-expression profiling. Cancer Res., 74(20), 2014, 5690-5699.
- Nowak-Sliwinska P, Scapozza L, Ruiz i Altaba A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim. Biophys. Acta Rev. Cancer. 1871(2), 2019, 434–454.
- Yang L, Argawal P. Systematic drug repositioning based on clinical side effects. PLoS One, 6(12),2011. https://doi.org/10.1371/journal.pone.0028025. Accessed on 12 June 2020.
- Mattes RD, Shaw LM, Edling-Owens J, Engelman K, Elsohly MA. Bypassing the first-pass effect for the therapeutic use of cannabinoids. Pharmacol. Biochem. Behav., 44(3), 1993, 745-747.
- Herman TF, Santos C. First Pass Effect. SatPearls, 2019. https://www.ncbi.nlm.nih.gov/books/NBK551679/. Accessed on 12 June 2020.
- Greaves A. The Use of Midazolam as an Intranasal Sedative in Dentistry. SAAD Dig.,32, 2016, 46-9.
- Yoshihara T, Horimoto M, Kitamura T, Osugi N, et al. 25 mg versus 50 mg dose of rectal diclofenac for prevention of post-ERCP pancreatitis in Japanese patients: a retrospective study. BMJ Open 2015;5:e006950. doi:10.1136/bmjopen-2014-006950. Accessed on 12 June 2020.
- Zhao XM, Iskar M, Zeller G, Kuhn M, et al. 2011. Prediction of drug combinations by integrating molecular and pharmacological data. PLoS Comput. Biol. 2011 Dec;7(12):e1002323. https://pubmed.ncbi.nlm.nih.gov/22219721/. Accessed on 12 June 2020.
- Batman G, Hampson L, Hampson IN. Lessons from repurposing HIV drugs: a prospective novel strategy for drug design. Future Virol., 6(9), 2011, 1021-1023.
- Battah B, Chemi G, Butini S, Campiani G, et al. A Repurposing Approach for Uncovering the Anti-Tubercular Activity of FDA-Approved Drugs with Potential Multi-Targeting Profiles. Molecules, 24(23), 2019, 4373-4385.
- Talha B, Dhamoon AS. Ritonavir. StatPearls. 2019. https://www.ncbi.nlm.nih.gov/books/NBK544312/. Accessed on 12 June 2020.
- Achenbach CJ, Darin KM, Murphy RL, Katlama C. Atazanavir/ritonavir-based combination antiretroviral therapy for treatment of HIV-1 infection in adults. Future Virol., 6(2), 2011, 157–177.
- Hicks CB, Cahn P, Cooper DA, Walmsley SL, et al. Durable efficacy of tipranavir-ritonavir in combination with an optimised background regimen of antiretroviral drugs for treatment-experienced HIV-1-infected patients at 48 weeks in the Randomized Evaluation of Strategic Intervention in multi-drug reSistant patients with Tipranavir (RESIST) studies: an analysis of combined data from two randomised open-label trials. The Lancet, 368(9534), 2006, 466-475.
- Hsu A, Isaacson J, Brun S, Bernstein B, Lam W, et al. Pharmacokinetic-Pharmacodynamic Analysis of Lopinavir-Ritonavir in Combination with Efavirenz and Two Nucleoside Reverse Transcriptase Inhibitors in Extensively Pretreated Human Immunodeficiency Virus-Infected Patients. Antimicrob. Agents Chemother., 47(1), 2003, 350–359.
- Sun W, Sanderson PE, Zheng W.. Drug combination therapy increases successful drug repositioning. Drug Discov. Today, 21(7), 2016, 1189-1195.
- Muralidharan N, Sakthivel R, Velmurugan D, Gromiha MM. Computational Studies of Drug Repurposing and Synergism of Lopinavir, Oseltamivir and Ritonavir Binding With SARS-CoV-2 Protease Against COVID-19 . J .Biomol. Struct. Dyn., 16, 2020, 1-6. Talha B, Dhamoon AS. Ritaonavir. StatPearls, 2019. https://www.ncbi.nlm.nih.gov/books/NBK544312/. Accessed on 12 June 2020.
- Kola L, LandisJ. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., 3(8), 2004, 711-715.