Here, Andrew Mitchell of IQVIA outlines the six stages of pharmacovigilance case automation, exploring how implementing intelligent automation such as AI and ML could benefit pharmaceutical companies.
Pharmacovigilance (PV) plays a critical role in gathering data about adverse events (AEs) and addressing patient safety. An important aspect of PV, the AE case processing segment currently faces numerous challenges. Adverse event reporting is expensive and time-consuming, and human errors can impact its value significantly, potentially putting patients at risk.
This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.
Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.
What you’ll discover:
Key trends shaping the pharmaceutical formulation sector
Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
The promise of intelligent automation through artificial intelligence (AI) and machine learning (ML) represents significant future value for the industry, yet many questions remain unanswered: What does automation mean for individual pharmaceutical organisations? How are real outcomes and return on investment (ROI) measured? This article breaks down PV automation into six stages and proposes them as a standard for the industry to follow.
Automating the case processing load
PV case processing is increasingly becoming automated yet what that means and where it begins is often unclear. This article draws on parallels with the automotive industry and their pursue of self-driving cars as another regulated industry with significant safety concerns and marketing spend. The automotive industry’s published standards for consecutive levels of automation associated with motor vehicles provide a relevant framework when re-interpreted for pharmacovigilance.
The six stages of automation:
Level 0: No automation
Level 1: Assistance-only
Level 2: Partial automation
Level 3: Conditional automation
Level 4: High automation
Level 5: Full automation
Level 0: No automation
Manual case processing, or stage zero, entails no automation assistance. All case intake and processing activities are fully manual, and the case submission and related decision-making depend entirely on human users performing all aspects of the task. Even if this performance is enhanced by warning or intervention systems, the process execution is still completely manual.
For organisations with low volumes of adverse events this may be all that is ever needed in terms of balancing compliance versus cost, but many proven digital tools to automate aspects of the process provide progression to the next stage.
Level 1: Assistance-only
The first stage of autonomy offers assistance only, with human user monitoring remaining an essential component.
If we compare this to the development of self-driving or autonomous vehicles, stage one would represent a combined effort between a human driver and the system. For example, a self-driving vehicle using stage one would allow the system to execute functions such as the steering, or the acceleration and deceleration of the vehicle (eg, blind spot alerts).
This level of automation has been present in PV to various degrees for many years. Auto-narratives and letter generation are good examples, where instead of spending time and resources manually authoring these free text descriptions, proven tools transform structured case data by manually selecting from pre-defined templates configured to match company-specific nuances.
Assistance-only automation is where most PV departments sit today.
Stage 2: Partial automation
At this stage of automation, human users continue monitoring case processing, taking action when necessary, but fewer scenarios require manual intervention. In our autonomous vehicle analogy, automation enables the system to assume responsibility for several functions simultaneously, such as both the steering and the acceleration/deceleration.
For example, automating data identification and extraction from source documents accelerates case processing, performing this activity upfront results in improved identification of follow-ups and minimises duplicates.
Bulk literature screening is another opportunity where AI can take over the heavy lifting. Instead of PV professionals spending hundreds of hours reading peer-reviewed literature and reports for AE signals, smart algorithms can parse more content in less time with superior accuracy.
Interestingly, an automated PV system using natural language processing (NLP) is more likely to uncover random mentions of conditions or products than a human reader, though there will also be false positives requiring review. An AI/ML system can be trained to improve on when to follow up and verify data and trigger requests for missing information, or this can be algorithmically driven such as when associated with null flavour values.
Either way the desired outcome is the same; functionality reducing the need for human resource usage lowers the costs of pharmacovigilance, improves safety results and frees up PV professionals for more value-driven activities.
Stage 3: Conditional automation
The conditional automation stage provides for system-monitored execution of all aspects of the case processing and safety decision-making. However, this applies to specific case types only, such as determined product/event combinations associated with the safety profile of a medicinal product, or ‘partner cases’ that should be streamlined where data entry, QC and medical assessment has already been performed.
Human users are notified when intervention is required, with the expectation that they will respond appropriately. They may also retain responsibility for final submission, just as a human driver retains the responsibility to take over if an event occurs that is outside the autonomous vehicle’s automation parameters.
The high automation stage enables the system to execute all aspects of multiple case types. Human users are notified when necessary, but manual intervention is not necessarily required for system quality or compliance.
Autonomous case processing serves to benefit the life sciences industry in multiple ways. Organisations can save time and money by flipping the traditional case processing workflow on its head”
At this stage, the system can autonomously perform all the steps involved in receiving and registering a case report, validation, duplicate check and data entry from compatible systems. ML increasingly enables QC, and medical assessments can take place for a significant number of case types.
The triage function prioritises cases for reporting purposes based on learned criteria and will only trigger an intervention request if a case falls outside the parameters of the data. Submission to authorities or partner organisations may or may not require manual intervention, depending on client risk profiles, how well the case meets other requirements and the health authority in question. Case closure and archiving can typically be automated according to specific factors.
The system is also capable of taking action even if a human operator does not respond appropriately to the intervention request. For an autonomous vehicle, this would be the equivalent of the system being able to guide the vehicle to pull over safely and stop without action from the driver.
Stage 5: Full automation
Once a PV system achieves full safety automation status, it can execute autonomous case processes and submissions for all case types. No manual intervention is required for any individual case or report recipient. This closely resembles the autonomous vehicle model, where the system undertakes all aspects of dynamic driving without any human involvement, regardless of road and environmental conditions.
In the full automation stage, if the system delivers a request for intervention but no human responds appropriately, AI can take the necessary action to mitigate the risk to patients. Whether this means triggering a nationwide notification about a drug-related AE or implementing a moratorium on distributing a batch, the actions are pre-set and automated for safety purposes.
Fully autonomous vehicles remain a pipedream despite what is advertised – and it is the author’s personal opinion that pharmacovigilance systems will not and should not reach this stage without a fundamental re-think of global pharmacovigilance. This is especially true for those organisations reporting in Japan.
Reaping the benefits
Autonomous case processing serves to benefit the life sciences industry in multiple ways. Organisations can save time and money by flipping the traditional case processing workflow on its head and automating labour-intensive and costly functions.
However, first companies need to determine where they lie today and set clear PV automation goals based on what is appropriate for their risk tolerance. There is no one-size fits all approach but everyone should start somewhere, implementing automation in stages as technology offers solutions we could only have dreamed about a decade ago.
About the author
Andrew Mitchell is Head of Product Management, Pharmacovigilance & Regulatory Technology at IQVIA.
Great points and true analogy between self driving cars and automation within PV.
I suppose most of the Pharma companies are taking a ‘wait and watch’ approach and are mostly around Conditional automation. Full automation/ true touch less case processing is still a distant dream.
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.
Great points and true analogy between self driving cars and automation within PV.
I suppose most of the Pharma companies are taking a ‘wait and watch’ approach and are mostly around Conditional automation. Full automation/ true touch less case processing is still a distant dream.