Product recalls due to contamination issues can be extremely costly for companies, in addition to the associated health implications. In this article, Marc Baiget Francesch explores the potential risks associated with N-nitrosodimethylamine (NDMA) contamination, why is it such a frequent contaminant and how to detect and eliminate the risks.
N-nitrosodimethylamine (NDMA) is one of the main compounds responsible for pharmaceutical product recalls. This year, 12 US Food and Drug Administration (FDA)-regulated drug products have already been recalled1 and, according to the administration’s records, 1,159 lots of these particular drugs have been affected by an FDA recall due to dangerous levels of nitrosamides such as NDMA.2 The FDA is not the only regulatory agency that has shown concern for nitrosamide contamination. The US Environmental Protection Agency (EPA) has regarded NDMA as a priority pollutant and last September the European Medicines Agency (EMA) initiated a review to advise marketing authorisation holders on how to prevent contamination by these agents.3
This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.
Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.
What you’ll discover:
Key trends shaping the pharmaceutical formulation sector
Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
Can’t attend live? No worries – register to receive the recording post-event.
NDMA is a semi-volatile organic compound that appears as a by-product of different industrial and natural processes. It is a member of the N-nitrosamines – a family of molecules known for their carcinogenic potential – and is classified as a B2 carcinogen. Exposure to high concentrations of NDMA is also related to significant liver damage and accidental ingestion is known to produce fever, nausea, vomiting and jaundice.4
It is important that companies know how to detect nitrosamide impurities in drug products, especially those that are more likely to be contaminated by side reactions”
Sources of nitrosamide contamination can vary; it can be found in both soil and water. In March 2011, for example, out of 17,900 water samples collected by the EPA, 10 percent were found to be contaminated by NDMA.4 Some researchers believe that the source of water contamination by NDMA is likely to be dimethylhydrazine, used for rocket fuel. However, in most cases of drug manufacturing, pharmaceutical contamination is more likely to result from a side reaction rather than external contamination. In some cases, active pharmaceutical ingredient (API) manufacturers contaminate their own products during the production process. The companies that deal with drug formulation and dosage forms will then use these contaminated APIs to develop the final drug product.5
As mentioned earlier, NDMA contamination has triggered a significant number of recalls and valsartan, a heart failure drug, has been one of the most affected products. Last year, Pfizer Japan recalled more than 700,000 tablets of Amvalo6 – their own brand of valsartan – and in 2018, Camber Pharmaceuticals7 and Major Pharmaceuticals8 issued recalls for valsartan batches. Other angiotensin II receptor blockers like losartan and irbesartan are also prone to NDMA contamination. Of note, other types of drugs have also been the subject of NDMA-related recalls. For example, high NDMA levels in ranitidine, used for gastric ulcer treatment, have led 14 companies to issue recalls in the last 12 months and six companies have issued NDMA-related recalls for metformin hydrochloride tablets, used to treat type 2 diabetes, since January this year.1
Considering the magnitude of the problem, it is important that companies know how to detect nitrosamide impurities in drug products, especially those that are more likely to be contaminated by side reactions. Although it will depend on the expected source of contamination, gas chromatography and mass spectroscopy are both typically used to detect the presence of nitrosamides; however, liquid chromatography and solid phase extraction are also used in some samples.4,9 While NDMA detection is not particularly hard, and elimination is not that complicated compared to other pharmaceutical contaminants (eg, biofilm forming bacteria), routine controls must be established to avoid any major problems. Photolytic reactions can be used to degrade NDMA and ultraviolet radiation can be used to effectively remove NDMA from water sources. Monoxygenases have also proved to be efficient for NDMA treatment, according to different studies.10,11
The case of ranitidine highlights the importance of checking for possible NDMA impurities in drug products, even before they are commercialised”
However, with some of the aforementioned drugs, the problem extends further than recalling, increasing nitrosamide detection, retiring one batch and then returning with an improved method. For ranitidine, NDMA impurities have contributed to the product’s demise, at least in the US market. Several laboratory tests revealed to the FDA that NDMA levels in ranitidine may increase over time, especially if the drug is exposed to higher temperatures.12 While the FDA stated that they might consider the product back on the market if any company showed evidence of NDMA levels not increasing to an unsafe level for consumers – currently set at 96ng/day – it is yet to be seen if this can be accomplished anytime soon. In fact, the contrary appears to be true; last April, the FDA announced the recall of all forms of nizatidine for the above reasons.13
The case of ranitidine highlights the importance of checking for possible NDMA impurities in drug products, even before they are commercialised, to avoid major health and economical pitfalls in the future. This is crucial for companies that rely on these pharmaceutical products, since the economic drawbacks are huge for companies that depend on products that might not return to the market. The drug development process is extremely long and expensive – involving an investment of more than €2,000,000,000 over a period of 10 to 12 years.14 Therefore, a recall that knocks a product out of the market might imply bankruptcy for smaller pharmaceutical companies that cannot buffer such a set-back. For this reason, NDMA contamination should not only be considered during production, but also before and during the strategic planning of new drug product development.
About the author
Marc Baiget Francesch has an MSc in Pharmaceutical Engineering and currently works as an Assistant Editor for the International Journal of Molecular Sciences. He also writes articles and innovation grants as a freelancer.
Sharp J, Wood T, Alvarez-Cohen L. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnology and Bioengineering. 2005;89(5):608-618.
Sharp J, Sales C, LeBlanc J, Liu J, Wood T, Eltis L et al. An Inducible Propane Monooxygenase Is Responsible for N-Nitrosodimethylamine Degradation by Rhodococcus sp. Strain RHA1. Applied and Environmental Microbiology. 2007;73(21):6930-6938.
Wouters O, McKee M, Luyten J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. JAMA. 2020;323(9):844.
Hi CASC – thanks for highlighting this. Due to the age of the article we will not update it; however, we will ensure this is taken into account with all future articles published on our site.
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.
Note that this story is talking about nitrosamines, though they wrongly mention these as nitrosamides. which are structurally different.
Please correct!
Hi CASC – thanks for highlighting this. Due to the age of the article we will not update it; however, we will ensure this is taken into account with all future articles published on our site.
Great online information of NDMA