news

Key trends studied for diabetes drug development in 2020

Functional links between metabolic, cardiovascular and renal diseases, as well as a focus on digital and a personalised approach will shape diabetes drug development in 2020, says new analysis.

Valentina Gburcik, PhD, Senior Director of Cardiovascular and Metabolic Disorders and researchers from GlobalData have looked at the key trends that will shape the metabolic disorders pharmaceutical space in 2020, focusing on diabetes.

Gburcik says that the diabetes market has long been a lucrative space for drug developers. According to a GlobalData study, 165 million people were diagnosed with type 2 diabetes globally in 2018, a number that is going to increase to 212 million by 2028. 

“It comes as no surprise that many major pharmaceutical companies have been investing in this area,” Gburcik said, “leading to an enormous number of marketed branded therapies, as well as a rich pipeline, which is predominantly filled with ‘me-too’ therapies entering a very saturated market.”

According to the researchers, a growing body of scientific evidence is showing interconnectedness between metabolic disorders and cardiovascular and renal diseases and an increasing number of scientists and drug developers are now focusing on understanding the functional links between these diseases to jointly address cardio-renal-metabolic risks, which should eventually lead to better and more holistic treatments.

Gburcik further continued that digital transformation in healthcare, including the use of artificial intelligence (AI) and big data, will be a game-changer to diabetes prevention and management.

“These technologies have the potential to revolutionise the treatment of diabetes by employing continuous remote monitoring of patients’ symptoms, physiological data and environmental factors through the use of wearable tech, sensors and smartphone technologies,” Gburcik said.

Patient centricity and personalised medicine are another rising theme in healthcare, Gburcik said. “Oncology is currently the most advanced field in terms of personalised molecular diagnosis and treatments tailored based on genetics. However, diabetes research is experiencing rapid progress too,” Gburcik explained.

“Although the studies so far have not shed enough light on the genetic contribution to the phenotype of heterogeneous metabolic diseases such as diabetes, big data that is currently being accumulated through the use of digital technology will soon lead to better characterisation of clusters, which may define specific subtypes of the disease, leading to more tailored treatments and better outcomes.”